My note when previewing abstract algebra.
Chapter 3:Groups
Integer Equivalence Classes and Symmetries
The Integers mod n
- 模n和: addition modulo n: $(a+b)\%n$
模n积: multiplication modulo n: $(ab)\%n$
Proposition 3.4
Let $\mathbb{Z}_n$ be the set of equivalence classes of the integers mod $n$ and $a$, $b$, $c$ $\in$ $\mathbb{Z}_n$.- communicative 交换律
$a+b \equiv b+a\quad(mod\ n)$
$a\times b \equiv b\times a\quad(mod\ n)$ - associative 结合律
$(a+b)+c \equiv a+(b+c)\quad(mod\ n)$
$(a\times b)\times c \equiv a\times (b\times c)\quad(mod\ n)$ - identities 特征值(0元素,数1
$a+0 \equiv a\quad(mod\ n)$
$a\times1\equiv a\quad(mod\ n)$ - distribution 分配律
$a\times(b+c)\equiv ab+ac\quad(mod\ n)$
- inverse 相反数(负元素
$a+(-a)\equiv0\quad(mod\ n)$
- multiplicative inverse 倒数
$a\ne 0$ required.
$gcd(a,n)=1\Leftrightarrow \exists b$, $a\times b \equiv 1\quad (mod\ n)$
- communicative 交换律
Symmetries
- Permutation of a set:
a one-to-one and onto map $\pi:S\to S$
- Symmetry of a geometric figure:
a rearrangement of the figure preserving the arrangement of its sides and vertices as well as its distances and angles.
边布局、点布局、长度和角度均不变, [布局] 不考虑顶点标号的 [排列] - Rigid Motion of an object:
a map from the plane to itself preserving the symmetry.
不造成形变,到自身的映射,相当于重新分配点的标号
$A\to B, B\to C, A\to A$ is denoted as:
$$\begin{pmatrix}A & B & C \\ B & C & A\end{pmatrix}$$ - Composing motion
similar to composing functions/maps
Definitions and Examples
Definitions
- Binary operations or Law of Composition on a set $G$:
$f:G\times G\to G$
every $(a,b)\in G\times G$ is mapped to a unique element denoted as $a\circ b$ or $ab$
双射 - Composition of 2 elements:
$a\circ b$ or $ab$
- Group $(G,\circ)$
a set $G$ together with a law of composition $(a,b)\mapsto a\circ b$ that satisfies the following 3 axioms:
- Associative
$\forall a,b,c\in G$, $(a\circ b)\circ c=a\circ(b\circ c)$ - Identity Element
$\forall a\in G$, $\exists e\in G$, $e\circ a=a\circ e=a$ - Inverse Element
$\forall a\in G$, $\exists a^{-1}$ that $a\circ a^{-1}=a^{-1}\circ a=e$
- Associative
- Abelian Group or Commutative Group
a group $(G,\circ )$ that $\forall a,b\in G$, $a\circ b=b\circ a$
- Cayley Table
describe a group in terms of an addition or multiplication table
类似乘法表的形式,将每对元素映射的结果记录在表中 - Order of a group
A group is finite, or has finite order, if it contains a finite number of elements.
The order is $|G|=n$
Otherwise, the group is said to be infinite or to have infinite order.
The order is $|G|=\infty$
Examples
- Group of Units of $\mathbb{Z}_n$
The set of all elements in $\mathbb{Z}_n$ that is relatively prime to $n$
- Symmetries of an equilateral triangle form a nonabelian group.
Described in Section 3.1
- General Linear Group
The set of invertible matrices forms a group
只有可逆阵满足,群定义 [公理3] - Quaternion Group
$Q_8=\{\pm 1,\pm I,\pm J,\pm K\}$
$1=\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}$, $I=\begin{pmatrix}0 & 1 \\ -1 & 0\end{pmatrix}$, $J=\begin{pmatrix}0 & i \\ i & 0\end{pmatrix}$, $K=\begin{pmatrix}i & 0 \\ 0 & -i\end{pmatrix}$
$I^2=J^2=K^2=-1$
$IJ=K$, $JK=I$, $KI=J$, $JI=-K$, $KJ=-I$, $IK=-J$ - Nonzero Complex Number
$$z^{-1}=\frac{a-bi}{a^2+b^2}$$
Basic Properties of Groups
- Proposition 3.17 特征元素唯一
The identity element in a group G is unique.Proof:
$e=e’e=e’$ - Proposition 3.18 逆元素唯一
The inverse of an element in a group G is unique.Proof:
$(g^{-1})=e(g^{-1})=(g^{-1})’g(g^{-1})=(g^{-1})’e=(g^{-1})’$ - Proposition 3.19 取逆分配
Let $G$ be a group. If $a,b\in G$, then $(ab)^{-1}=b^{-1}a^{-1}$.Proof:
$abb^{-1}a^{-1}=aea^{-1}=aa^{-1}=e$
$b^{-1}a^{-1}ab=b^{-1}eb=b^{-1}b=e$
Inverse is unique - Proposition 3.20 两次取逆
Let $G$ be a group. For any $a\in G$, $(a^{-1})^{-1}=a$.Proof:
$(a^{-1})^{-1}=e(a^{-1})^{-1}=aa^{-1}(a^{-1})^{-1}=ae=a$ - Proposition 3.21 方程唯一解
Let $G$ be a group and $a,b\in G$. Then the equations $ax = b$ and $xa = b$ have unique solutions in $G$. The right and left cancellation laws are true in groups.Proof:
$x_1=a^{-1}ax_1=a^{-1}ax_2=x_2$
$x_1=x_1aa^{-1}=x_2aa^{-1}=x_2$ - Proposition 3.22 消去律
If $G$ is a group and $a,b,c\in G$, then $ba=ca\Rightarrow b=c$ and $ab=ac\Rightarrow b=c$.Proof:
$ba=ca\Rightarrow baa^{-1}=caa^{-1}\Rightarrow b=c$
$ab=ac\Rightarrow a^{-1}ab=a^{-1}ac\Rightarrow b=c$ - Exponential Notation for $g\in G$ and $n\in\mathbb{N}$ 幂
$g^0=e$
$g^n=g\cdot g\cdots g$(n times)
$g^{-n}=g^{-1}\cdot g^{-1}\cdots g^{-1}$(n times) - Theorem 3.23
- $g^mg^n=g^{m+n}$, $\forall m,n\in\mathbb{Z}$
- $(g^m)^n=g^{mn}$, $\forall m,n\in\mathbb{Z}$
- $(gh)^n=(h^{-1}g^{-1})^{-n}$, $\forall n\in\mathbb{Z}$
- Only for abelian groups, $(gh)^n=g^nh^n$, $\forall n\in\mathbb{Z}$
Subgroups
Definitions
- Subgroup $H$ of a group $G$ 子群
A subset H of G such that when the group operation of G is restricted to H, H is a group in its own right.
元素为子集,二元操作不变,仍满足群公理 - Trivial Subgroup
$H=\{e\}$
- Proper Subgroup 真子群
$H\ne G$
Examples
- $\mathbb{Q}^*$ is a subgroup of $\mathbb{R}^*$
Proof:
- 1 is the identity element
- $(p/q)^{-1}=q/p$
- Multiplication is associative in both $\mathbb{Q}^$ and $\mathbb{R}^$
- $\{1,-1,i,-i\}$ is a subgroup of $\mathbb{C}^*$
$SL_2(\mathbb{R})$ is a subgroup of $GL_2(\mathbb{R})$
$GL_2(\mathbb{R})$: general linear group.
$SL_2(\mathbb{R})$: special linear group, matrices of determinant 1.Proof:
- $I_2$ is the identity element.
- $A=\begin{pmatrix}a & b \\ c & d\end{pmatrix}$, $A^{-1}=\begin{pmatrix}d & -b \\ -c & a\end{pmatrix}$
- Multiplication is associative.
- The product also has determinant 1, by $|AB|=|A||B|$.
- A subset $H$ of a group $G$ can be a group without being a subgroup of $G$.
$(\mathbb{M}{2\times 2},+)$ is a subset of but not a subgroup of $GL{2}$.
此处二元操作不同,因而不是子群 - One way of telling whether or not two groups are the same is by examining their subgroups.
判断群是否同构,可判断子群的数量及各自的大小是否相同
Some Subgroup Theorems
Proposition 3.30 子群充要条件1
A subset H of G is a subgroup if and only if it satisfies the following conditions:
- The identity $e$ of $G$ is in $H$.
- If $h_1$, $h_2\in H$, then $h_1h_2\in H$.
- If $h\in H$, then $h^{-1}\in H$.
Proof:
$\Rightarrow$:- $ee_H=e_H=e_He_H\Rightarrow e=e_H$
- $H$ is a group
- $H$ is a group, then $h(h^{-1})’=e$, $(h^{-1})’\in H$, also (h^{-1})’\in G$. By uniqueness of inverse, $(h^{-1})’=h^{-1}$.
$\Leftarrow$:
These conditions plus the associativity of the binary operation will prove that $H$ is a group.Proposition 3.31 子群充要条件2
Let $H$ be a subset of a group $G$. Then $H$ is a subgroup of $G$ if and only if $H\ne \emptyset$, and whenever $g$, $h\in H$ then $gh^{−1}$ is in $H$.
Proof:
$\Rightarrow$:
$h\in H\Rightarrow h^{-1}\in H\Rightarrow gh^{-1}\in H$$\Leftarrow$:
- Let $g=h$, we have $e\in H$
- Let $g=h_1$, $h=h_2^{-1}$, we have $gh^{-1}=h_1(h_2^{-1})^{-1}=h_1h_2\in H$
- Let $g=e$, we have $h^{-1}\in H$
- By Proposition 3.30
Chapter 4: Cyclic Groups
Cyclic Subgroups
Definitions
- Cyclic Subgroup of a group $G$ generated by $a$: 循环子群
$\langle a\rangle=\{a^k:k\in\mathbb{Z}\}$, $a\in G$
Theorem 4.3
$\langle a\rangle$ is a subgroup of $G$.
$\langle a\rangle$ is the smallest subgroup of $G$ that contains a.Proof:
- $e=a^0\in \langle a\rangle$
- $g=a^m\in \langle a\rangle$,$h=a^n\in \langle a\rangle$, then $gh=a^{m+n}\in \langle a\rangle$
- $g=a^n\in \langle a\rangle$,then $g^{-1}=a^{-n}\in \langle a\rangle$
- Any subgroup $H$ containing $a$ must contain all powers of $a$, then $\langle a\rangle\subset H$, $\langle a\rangle$ is the smallest
- Cyclic Group $G$ 循环群
$\exists a\in G$, $G=\langle a\rangle$
- Generator of a cyclic group 生成元
$a$ in $\langle a\rangle$
- Order of a cyclic group $G$: 阶
$a\in G$, the smallest positive integer $n$ that $a^n=e$
$|a|=n$
If there is no such $n$, $|a|=\infty$ Theorem 4.9
Every cyclic group is abelian.
Proof:
$g=a^r\in \langle a\rangle$,$h=a^s\in \langle a\rangle$, $gh=a^ra^s=a^{r+s}=a^{s+r}=a^sa^r=hg$
Subgroups of Cyclic Groups
Theorem 4.10
Every subgroup of a cyclic group is cyclic.
Proof: (Brief Version)
Let $m$ be the smallest natural number such that $a^m\in H$. Such an $m$ exists by the Principle of Well-Ordering.
$h=a^m\in H$, we must show that every $h’\in H$ can be written as a power of $h$
$h’=a^k=a^{mq+r}=(a^m)^qa^r=h^qa^r\in H$, where $0\leq r<m$
$a^r=a^kh^{-q}$, then $a^r\in H$
$r=0$, because $m$ is the smallest positive integer that $a^m\in H$
$h’=h^q$
$H=\langle h\rangle$ is a cyclic group- Corollary 4.11
The The subgroups of $\mathbb{Z}$ are exactly $n\mathbb{Z}$ for $n=1,2,\cdots$.
Proposition 4.12
Let $G$ be a cyclic group of order $n$ and suppose that $a$ is a generator for $G$. Then $a^k = e$ if and only if $n$ divides $k$.
Proof:
$\Rightarrow$:
$e=a^k=a^{nq+r}=a^{nq}a^r=ea^r=a^r$
$r=0$, $n$ divides $k$$\Leftarrow$:
$a^k=a^{ns}=(a^n)^s=e^s=e$Theorem 4.13
Let G be a cyclic group of order n and suppose that $a\in G$ is a generator of the group. If $b=a^k$, then the order of $b$ is $n/d$, where $d = gcd(k,n)$.
Proof:
Suppose $e=b^m=a^{km}$
The order $m$ is the smallest integer $n$ that $n$ divides $km$
The smallest $km$ is $lcm(k,m)$, which is $kn/d$
Then $m=n/d$- Corollary 4.14
The generators of $\mathbb{Z}_n$ are the integers r such that $1\leq r<n$ and $gcd(r,n) = 1$.
See the Group of Units of $\mathbb{Z}_n$
Multiplicative Group of Complex Numbers
Definitions
- Complex Numbers 复数
$\mathbb{C}=\{a+bi:a,b\in\mathbb{R}\}$
$a$ is Real Part 实部
$b$ is Imaginary Part 虚部 - Rectangular or Cartesian
$z=a+bi$
- Complex Conjugate 共轭复数
$z^*=a-bi$
- Absolute Value or Modulus
$|z|=\sqrt{a^2+b^2}$
- Polar Coordinates
$z=r(\cos\theta+i\sin\theta)=r\textrm{cis}(\theta)$
$r=|z|$
Theorems
- Proposition 4.20
$z=r\textrm{cis}\theta$, $w=s\textrm{cis}\phi$
$zw=rs\textrm{cis}(\theta+\phi)$ Theorem 4.22 DeMoivre
$[r\textrm{cis}\theta]^n=r^n\textrm{cis}(n\theta)$
Proof:
Induction on n.
The Circle Group and the Roots of Unity
- Circle Group
$\mathbb{T}=\{z\in\mathbb{C}:|z|=1\}$
- Proposition 4.24
The circle group is a subgroup of $\mathbb{C}$
- $n$-th Roots of Unity
The $z$ satisfying $z^n=1$
Theorem 4.25
The $n$-th roots of unity is $z=\textrm{cis}(\frac{2k\pi}{n})$
Proof:
$z^n=\textrm{cis}(2k\pi)=1$- Primitive $n$-th Root of Unity
A generator for the group of the nth roots of unity.
The Method of Repeated Squares
- Calculate $x^a(\textrm{mod }b)$
- First: $a=\sum{2^{a_i}}$
- Calculate: $x^{2^{a_i}}(\textrm{mod }b)$ (This is quick)
- Add up.