Lesson 1
combinatorial $\sim$ discrete & finite
- solution combinatorial object
- constraint combinatorial structure
Enumeration: How many solutions satisfying the constraints
- Existence: Does there exist a solution
- Extremal: How large/small a solution can be to preserve/avoid structure
- Ramsey: when a solution is sufficiently large, some structures must emerge
- Optimization: find the optimal solution
Construction: construct a solution
Enumeration(Counting)
- How many ways are there:
- $n!$ to rank $n$ people
- $12^n$ to assign $m$ zodiac signs to $n$ people
- $n \choose m$ to choose $m$ people out of $n$ people
- $n-1 \choose m-1$ to partition $n$ people into $m$ groups
- $?$ to distribute $m$ yuan to $n$ people
- $?$ to partition $m$ yuan to $n$ parts
- How many ways are there:
Name | Description | Notation | Number | Repetition | Ordered | ||
---|---|---|---|---|---|---|---|
Tuple | $n$-tuples of $[m]$ | $[m]^n$ | $m^n$ | Y | Y | ||
Nultiset | $k$-multiset of $n$-set | - | ${n+k-1\choose k}$ | Y | N | ||
Subset | $k$-uniform of $n$-set, $\ | S\ | =n$ | - | $\binom{n}{k}$ | N | N |
Partition | $k$-partition of $n$-set | - | $\{ {n\atop k} \}$ | N | N |
- The product rule: $|S\times T|=|S|\cdot|T|$
- The bijection rule: if there exists a bijection between finite sets $S$ and $T$, then $|S|=|T|$.
- Tuples
- $[m]=\{1,2,\cdots,m\}$
- $[m]^n=[m] \times [m] \times\cdots\times [m]$
- $#$ of tuples: $|[m]^n|=m^n$
- Functions
- $f:[n]\to[m]$
- $#$ of functions: $m^n$
Proof: $f:[n]\to[m]\Leftrightarrow v_f\in[m]^n$
- Subsets
- Power set: $2^{[n]}={S|S\subseteq [n]}$
- $|2^{[n]}|=2^n$
- Proof: $S\subseteq [n]\leftrightarrow \{0,1\}^n$
- Subsets of fixed size
- $#$ of $k$-uniform: ${n \choose k}=\frac{n!}{k!(n-k)!}$
- $(n)_k=n(n-1)\cdots(n-k+1)$ is $n$ lower factorial of $k$
- Binomial coefficients
- ${n \choose k}={n\choose n-k}$
- $\sum_{k=0}^{n}{n \choose k}=2^n$
- $(1+x)^n=\sum_{k=0}^{n}{n \choose k}x^k$
Proof: $(1+x)^n=(1+x)(1+x)\cdots(1+x)$, $#$ of $x^k$ is $n\choose k$
- $S=\{x_1, x_2,\cdots,x_n\}$, $#$ of odd subsets $=$ $#$ of even subsets
proof: let $x=-1$
- Compositions of an integer
- $k$-composition of $n$: $k$-tuple that $x_1+x_2+\cdots+x_n=n$, $x_i\in\{1,2,\cdots x_n\}$
- $#$ of $k$-composition: $n-1 \choose k-1$
- weak $k$-composition of $n$: $x_i$ can be 0, aka $(x_1+1)+(x_2+1)+\cdots+(x_n+1)=n+k$
- $#$ of weak $k$-composition: $n+k-1\choose k-1$
- Multisets
- Combinations with repetitions can be formally defined as multisets.
- $({n \choose k})={n+k-1\choose k}$
- Multinomial coefficients
- $\binom{n}{m_1,m_2,\cdots, m_k}=\frac{n!}{m_1!m_2!\cdots m_k!}$, $\sum_i m_i=n$
- $\binom{n}{m, n-m}=\binom{n}{m}$
- $(x_1,x_2,\cdots,x_k)^n=\sum_{m_1+m_2+\cdots+m_k=n}\binom{n}{m_1,m_2,\cdots, m_k}x_1^{m_1}\cdots x_k^{m_k}$
- Partitions of a set
- partition of $S$: $P={S_1,S_2,\cdots,S_k}$, $S_i\ne\emptyset$, $S_i\cap S_j$ if $i\ne j$, $\bigcup S_i=S$
- if $|P|=k$, then $P$ is a $k$-partition of $S$
- $#$ of $k$-partitions of a $n$-set is $\{ {n\atop k} \}$
- Stirling number of the second kind
- The twelvfold way
$n$ balls | $m$ bins | unrestricted | $\leq 1$ for all bin | $\geq 1$ for all bin |
---|---|---|---|---|
distinct | distinct | $m^n$ | $(m)_n=n!\binom{m}{n}$ | $m!\{ {n\atop m} \}$ |
identical | distinct | $(\binom{m}{n})$ | $m\choose n$ | $\binom{m-1}{n-1}$ |
distinct | identical | $\sum_{k=1}^m\{ {n\atop k} \}$ | $1$ | $\{ {n\atop m} \}$ |
identical | identical | $-$ | $-$ | $-$ |