My note when previewing Copying the Textbook of abstract algebra.

Chapter 3:Groups

Integer Equivalence Classes and Symmetries

The Integers mod n

  • 模n和: addition modulo n: $(a+b)\%n$
  • 模n积: multiplication modulo n: $(ab)\%n$

  • Proposition 3.4
    Let $\mathbb{Z}_n$ be the set of equivalence classes of the integers mod $n$ and $a$, $b$, $c$ $\in$ $\mathbb{Z}_n$.

    1. communicative 交换律

      $a+b \equiv b+a\quad(mod\ n)$
      $a\times b \equiv b\times a\quad(mod\ n)$

    2. associative 结合律

      $(a+b)+c \equiv a+(b+c)\quad(mod\ n)$
      $(a\times b)\times c \equiv a\times (b\times c)\quad(mod\ n)$

    3. identities 特征值(0元素,数1

      $a+0 \equiv a\quad(mod\ n)$
      $a\times1\equiv a\quad(mod\ n)$

    4. distribution 分配律

      $a\times(b+c)\equiv ab+ac\quad(mod\ n)$

    5. inverse 相反数(负元素

      $a+(-a)\equiv0\quad(mod\ n)$

    6. multiplicative inverse 倒数

      $a\ne 0$ required.
      $gcd(a,n)=1\Leftrightarrow \exists b$, $a\times b \equiv 1\quad (mod\ n)$

Symmetries

  • Permutation of a set:
  • a one-to-one and onto map $\pi:S\to S$

  • Symmetry of a geometric figure:

    a rearrangement of the figure preserving the arrangement of its sides and vertices as well as its distances and angles.
    边布局、点布局、长度和角度均不变, [布局] Arrangement 不考虑顶点标号的 [排列] Permutation

  • Rigid Motion of an object:

    a map from the plane to itself preserving the symmetry.
    不造成形变,到自身的映射,相当于重新分配点的标号
    $A\to B, B\to C, A\to A$ is denoted as:
    $$\begin{pmatrix}A & B & C \\ B & C & A\end{pmatrix}$$

  • Composing motion

    similar to composing functions/maps

Definitions and Examples

Definitions

  • Binary operations or Law of Composition on a set $G$:

    $f:G\times G\to G$
    every $(a,b)\in G\times G$ is mapped to a unique element denoted as $a\circ b$ or $ab$
    双射

  • Composition of 2 elements:

    $a\circ b$ or $ab$

  • Group $(G,\circ)$

    a set $G$ together with a law of composition $(a,b)\mapsto a\circ b$ that satisfies the following 3 axioms:

    1. Associative
      $\forall a,b,c\in G$, $(a\circ b)\circ c=a\circ(b\circ c)$
    2. Identity Element
      $\forall a\in G$, $\exists e\in G$, $e\circ a=a\circ e=a$
    3. Inverse Element
      $\forall a\in G$, $\exists a^{-1}$ that $a\circ a^{-1}=a^{-1}\circ a=e$
  • Abelian Group or Commutative Group

    a group $(G,\circ )$ that $\forall a,b\in G$, $a\circ b=b\circ a$

  • Cayley Table

    describe a group in terms of an addition or multiplication table
    类似乘法表的形式,将每对元素映射的结果记录在表中

  • Order of a group

    A group is finite, or has finite order, if it contains a finite number of elements.
    The order is $|G|=n$
    Otherwise, the group is said to be infinite or to have infinite order.
    The order is $|G|=\infty$

Examples

  • Group of Units of $\mathbb{Z}_n$

    The set of all elements in $\mathbb{Z}_n$ that is relatively prime to $n$

  • Symmetries of an equilateral triangle form a nonabelian group.

    Described in Section 3.1

  • General Linear Group

    The set of invertible matrices forms a group
    只有可逆阵满足,群定义 [公理3] Inverse Element

  • Quaternion Group

    $Q_8=\{\pm 1,\pm I,\pm J,\pm K\}$
    $1=\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}$, $I=\begin{pmatrix}0 & 1 \\ -1 & 0\end{pmatrix}$, $J=\begin{pmatrix}0 & i \\ i & 0\end{pmatrix}$, $K=\begin{pmatrix}i & 0 \\ 0 & -i\end{pmatrix}$
    $I^2=J^2=K^2=-1$
    $IJ=K$, $JK=I$, $KI=J$, $JI=-K$, $KJ=-I$, $IK=-J$

  • Nonzero Complex Number

    $$z^{-1}=\frac{a-bi}{a^2+b^2}$$

Basic Properties of Groups

  • Proposition 3.17 特征元素唯一
    The identity element in a group G is unique.

    Proof:
    $e=e’e=e’$

  • Proposition 3.18 逆元素唯一
    The inverse of an element in a group G is unique.

    Proof:
    $(g^{-1})=e(g^{-1})=(g^{-1})’g(g^{-1})=(g^{-1})’e=(g^{-1})’$

  • Proposition 3.19 取逆分配
    Let $G$ be a group. If $a,b\in G$, then $(ab)^{-1}=b^{-1}a^{-1}$.

    Proof:
    $abb^{-1}a^{-1}=aea^{-1}=aa^{-1}=e$
    $b^{-1}a^{-1}ab=b^{-1}eb=b^{-1}b=e$
    Inverse is unique

  • Proposition 3.20 两次取逆
    Let $G$ be a group. For any $a\in G$, $(a^{-1})^{-1}=a$.

    Proof:
    $(a^{-1})^{-1}=e(a^{-1})^{-1}=aa^{-1}(a^{-1})^{-1}=ae=a$

  • Proposition 3.21 方程唯一解
    Let $G$ be a group and $a,b\in G$. Then the equations $ax = b$ and $xa = b$ have unique solutions in $G$. The right and left cancellation laws are true in groups.

    Proof:
    $x_1=a^{-1}ax_1=a^{-1}ax_2=x_2$
    $x_1=x_1aa^{-1}=x_2aa^{-1}=x_2$

  • Proposition 3.22 消去律
    If $G$ is a group and $a,b,c\in G$, then $ba=ca\Rightarrow b=c$ and $ab=ac\Rightarrow b=c$.

    Proof:
    $ba=ca\Rightarrow baa^{-1}=caa^{-1}\Rightarrow b=c$
    $ab=ac\Rightarrow a^{-1}ab=a^{-1}ac\Rightarrow b=c$

  • Exponential Notation for $g\in G$ and $n\in\mathbb{N}$ 幂

    $g^0=e$
    $g^n=g\cdot g\cdots g$(n times)
    $g^{-n}=g^{-1}\cdot g^{-1}\cdots g^{-1}$(n times)

  • Theorem 3.23
    1. $g^mg^n=g^{m+n}$, $\forall m,n\in\mathbb{Z}$
    2. $(g^m)^n=g^{mn}$, $\forall m,n\in\mathbb{Z}$
    3. $(gh)^n=(h^{-1}g^{-1})^{-n}$, $\forall n\in\mathbb{Z}$
    4. Only for abelian groups, $(gh)^n=g^nh^n$, $\forall n\in\mathbb{Z}$

Subgroups

Definitions

  • Subgroup $H$ of a group $G$ 子群

    A subset H of G such that when the group operation of G is restricted to H, H is a group in its own right.
    元素为子集,二元操作不变,仍满足群公理

  • Trivial Subgroup

    $H=\{e\}$

  • Proper Subgroup 真子群

    $H\ne G$

Examples

  • $\mathbb{Q}^*$ is a subgroup of $\mathbb{R}^*$

    Proof:

    1. 1 is the identity element
    2. $(p/q)^{-1}=q/p$
    3. Multiplication is associative in both $\mathbb{Q}^$ and $\mathbb{R}^$
  • $\{1,-1,i,-i\}$ is a subgroup of $\mathbb{C}^*$
  • $SL_2(\mathbb{R})$ is a subgroup of $GL_2(\mathbb{R})$

    $GL_2(\mathbb{R})$: general linear group.
    $SL_2(\mathbb{R})$: special linear group, matrices of determinant 1.

    Proof:

    1. $I_2$ is the identity element.
    2. $A=\begin{pmatrix}a & b \\ c & d\end{pmatrix}$, $A^{-1}=\begin{pmatrix}d & -b \\ -c & a\end{pmatrix}$
    3. Multiplication is associative.
    4. The product also has determinant 1, by $|AB|=|A||B|$.
  • A subset $H$ of a group $G$ can be a group without being a subgroup of $G$.

    $(\mathbb{M}{2\times 2},+)$ is a subset of but not a subgroup of $GL{2}$.
    此处二元操作不同,因而不是子群

  • One way of telling whether or not two groups are the same is by examining their subgroups.

    判断群是否同构,可判断子群的数量及各自的大小是否相同

Some Subgroup Theorems

  • Proposition 3.30 子群充要条件1

    A subset H of G is a subgroup if and only if it satisfies the following conditions:

    1. The identity $e$ of $G$ is in $H$.
    2. If $h_1$, $h_2\in H$, then $h_1h_2\in H$.
    3. If $h\in H$, then $h^{-1}\in H$.

    Proof:
    $\Rightarrow$:

    1. $ee_H=e_H=e_He_H\Rightarrow e=e_H$
    2. $H$ is a group
    3. $H$ is a group, then $h(h^{-1})’=e$, $(h^{-1})’\in H$, also (h^{-1})’\in G$. By uniqueness of inverse, $(h^{-1})’=h^{-1}$.

    $\Leftarrow$:
    These conditions plus the associativity of the binary operation will prove that $H$ is a group.

  • Proposition 3.31 子群充要条件2

    Let $H$ be a subset of a group $G$. Then $H$ is a subgroup of $G$ if and only if $H\ne \emptyset$, and whenever $g$, $h\in H$ then $gh^{−1}$ is in $H$.

    Proof:
    $\Rightarrow$:
    $h\in H\Rightarrow h^{-1}\in H\Rightarrow gh^{-1}\in H$

    $\Leftarrow$:

    1. Let $g=h$, we have $e\in H$
    2. Let $g=h_1$, $h=h_2^{-1}$, we have $gh^{-1}=h_1(h_2^{-1})^{-1}=h_1h_2\in H$
    3. Let $g=e$, we have $h^{-1}\in H$
    4. By Proposition 3.30

Chapter 4: Cyclic Groups

Cyclic Subgroups

Definitions

  • Cyclic Subgroup of a group $G$ generated by $a$: 循环子群

    $\langle a\rangle=\{a^k:k\in\mathbb{Z}\}$, $a\in G$

  • Theorem 4.3

    $\langle a\rangle$ is a subgroup of $G$.
    $\langle a\rangle$ is the smallest subgroup of $G$ that contains a.

    Proof:

    1. $e=a^0\in \langle a\rangle$
    2. $g=a^m\in \langle a\rangle$,$h=a^n\in \langle a\rangle$, then $gh=a^{m+n}\in \langle a\rangle$
    3. $g=a^n\in \langle a\rangle$,then $g^{-1}=a^{-n}\in \langle a\rangle$
    4. Any subgroup $H$ containing $a$ must contain all powers of $a$, then $\langle a\rangle\subset H$, $\langle a\rangle$ is the smallest
  • Cyclic Group $G$ 循环群

    $\exists a\in G$, $G=\langle a\rangle$

  • Generator of a cyclic group 生成元

    $a$ in $\langle a\rangle$

  • Order of a cyclic group $G$: 阶

    $a\in G$, the smallest positive integer $n$ that $a^n=e$
    $|a|=n$
    If there is no such $n$, $|a|=\infty$

  • Theorem 4.9

    Every cyclic group is abelian.

    Proof:
    $g=a^r\in \langle a\rangle$,$h=a^s\in \langle a\rangle$, $gh=a^ra^s=a^{r+s}=a^{s+r}=a^sa^r=hg$

Subgroups of Cyclic Groups

  • Theorem 4.10

    Every subgroup of a cyclic group is cyclic.

    Proof: (Brief Version)
    Let $m$ be the smallest natural number such that $a^m\in H$. Such an $m$ exists by the Principle of Well-Ordering.
    $h=a^m\in H$, we must show that every $h’\in H$ can be written as a power of $h$
    $h’=a^k=a^{mq+r}=(a^m)^qa^r=h^qa^r\in H$, where $0\leq r<m$
    $a^r=a^kh^{-q}$, then $a^r\in H$
    $r=0$, because $m$ is the smallest positive integer that $a^m\in H$
    $h’=h^q$
    $H=\langle h\rangle$ is a cyclic group

  • Corollary 4.11

    The The subgroups of $\mathbb{Z}$ are exactly $n\mathbb{Z}$ for $n=1,2,\cdots$.

  • Proposition 4.12

    Let $G$ be a cyclic group of order $n$ and suppose that $a$ is a generator for $G$. Then $a^k = e$ if and only if $n$ divides $k$.

    Proof:
    $\Rightarrow$:
    $e=a^k=a^{nq+r}=a^{nq}a^r=ea^r=a^r$
    $r=0$, $n$ divides $k$

    $\Leftarrow$:
    $a^k=a^{ns}=(a^n)^s=e^s=e$

  • Theorem 4.13

    Let G be a cyclic group of order n and suppose that $a\in G$ is a generator of the group. If $b=a^k$, then the order of $b$ is $n/d$, where $d = gcd(k,n)$.

    Proof:
    Suppose $e=b^m=a^{km}$
    The order $m$ is the smallest integer $n$ that $n$ divides $km$
    The smallest $km$ is $lcm(k,m)$, which is $kn/d$
    Then $m=n/d$

  • Corollary 4.14

    The generators of $\mathbb{Z}_n$ are the integers r such that $1\leq r<n$ and $gcd(r,n) = 1$.
    See the Group of Units of $\mathbb{Z}_n$

Multiplicative Group of Complex Numbers

Definitions

  • Complex Numbers 复数

    $\mathbb{C}=\{a+bi:a,b\in\mathbb{R}\}$
    $a$ is Real Part 实部
    $b$ is Imaginary Part 虚部

  • Rectangular or Cartesian

    $z=a+bi$

  • Complex Conjugate 共轭复数

    $z^*=a-bi$

  • Absolute Value or Modulus

    $|z|=\sqrt{a^2+b^2}$

  • Polar Coordinates

    $z=r(\cos\theta+i\sin\theta)=r\textrm{cis}(\theta)$
    $r=|z|$

Theorems

  • Proposition 4.20

    $z=r\textrm{cis}\theta$, $w=s\textrm{cis}\phi$
    $zw=rs\textrm{cis}(\theta+\phi)$

  • Theorem 4.22 DeMoivre

    $[r\textrm{cis}\theta]^n=r^n\textrm{cis}(n\theta)$

    Proof:
    Induction on n.

The Circle Group and the Roots of Unity

  • Circle Group

    $\mathbb{T}=\{z\in\mathbb{C}:|z|=1\}$

  • Proposition 4.24

    The circle group is a subgroup of $\mathbb{C}$

  • $n$-th Roots of Unity

    The $z$ satisfying $z^n=1$

  • Theorem 4.25

    The $n$-th roots of unity is $z=\textrm{cis}(\frac{2k\pi}{n})$

    Proof:
    $z^n=\textrm{cis}(2k\pi)=1$

  • Primitive $n$-th Root of Unity

    A generator for the group of the nth roots of unity.

The Method of Repeated Squares

  • Calculate $x^a(\textrm{mod }b)$
  • First: $a=\sum{2^{a_i}}$
  • Calculate: $x^{2^{a_i}}(\textrm{mod }b)$ (This is quick)
  • Add up.